

Malware Analysis Report

Cyclops Blink

23 February 2022

© Crown Copyright 2022

Version 1.0

Cyclops Blink
Modular malware framework targeting SOHO network devices

Executive summary

• Cyclops Blink is a malicious Linux ELF executable, compiled for the 32-bit PowerPC (big-
endian) architecture.

• Persistence is maintained throughout the legitimate device firmware update process.

• Implements a modular framework consisting of a core component and additional modules that
are executed as child processes.

• Modules to download/upload files, extract device information, and update the malware have
been built-in and are executed at startup.

• Command and control (C2) communication uses a custom binary protocol underneath TLS,
and messages are individually encrypted.

Introduction

Cyclops Blink is a malicious Linux ELF executable, compiled for the 32-bit PowerPC (big-endian)
architecture. NCSC, FBI, CISA, NSA and industry analysis has associated it with a large-scale botnet
targeting Small Office/Home Office (SOHO) network devices. This botnet has been active since at
least June 2019, affecting WatchGuard Firebox and possibly other SOHO network devices.

This report covers the analysis of two samples recently acquired by the FBI from WatchGuard Firebox
devices known to have been incorporated into the botnet.

Malware details

Metadata

Filename cpd

Description
Cyclops Blink - Linux ELF PowerPC big-endian. The size corresponds to the
complete file, but the hash values correspond to the executable code
segment only.

Size 2494940 bytes

MD5 d01e2c2e8df92edeb8298c55211bc4b6

SHA-1 3adf9a59743bc5d8399f67cab5eb2daf28b9b863

SHA-256 50df5734dd0c6c5983c21278f119527f9fdf6ef1d7e808a29754ebc5253e9a86

Filename cpd

Description
Cyclops Blink - Linux ELF PowerPC big-endian. The size corresponds to the
complete file, but the hash values correspond to the executable code
segment only.

Size 2494940 bytes

MD5 bbb76de7654337fb6c2e851d106cebc7

SHA-1 c59bc17659daca1b1ce65b6af077f86a648ad8a8

SHA-256 c082a9117294fa4880d75a2625cf80f63c8bb159b54a7151553969541ac35862

The above Cyclops Blink samples are loaded into memory as two program segments. The first of
these program segments has read/execute permissions and contains the Linux ELF header and
executable code for the malware. The second has read/write permissions and contains the data,
including victim-specific information, used by the malware. To make the sample hashes as useful as
possible for comparison purposes, they have been calculated over the executable (first) program
segments only. The file sizes correspond to those of the original files.

Filename install_upgrade

Description Cyclops Blink embedded ELF - Linux ELF PowerPC big-endian

Size 964556 bytes

MD5 3c9d46dc4e664e20f1a7256e14a33766

SHA-1 7d61c0dd0cd901221a9dff9df09bb90810754f10

SHA-256 4e69bbb61329ace36fbe62f9fb6ca49c37e2e5a5293545c44d155641934e39d1

Filename install_upgrade

Description Cyclops Blink embedded ELF - Linux ELF PowerPC big-endian

Size 964556 bytes

MD5 3f22c0aeb1eec4350868368ea1cc798c

SHA-1 438cd40caca70cafe5ca436b36ef7d3a6321e858

SHA-256 ff17ccd8c96059461710711fcc8372cfea5f0f9eb566ceb6ab709ea871190dc6

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Execution T1059.004 Command and
Scripting Interpreter:
Unix Shell

Cyclops Blink executes downloaded files
using the Linux API function execlp.

Persistence T1037.004 Boot or Logon
Initialization Scripts:
RC Scripts

Cyclops Blink is executed on device
startup, using a modified S51armled RC

script.

Persistence T1542.001 Pre-OS Boot:
System Firmware

Cyclops Blink maintains persistence
throughout the legitimate device firmware
update process. This is achieved by
patching the firmware when it is
downloaded to the device.

Defence
Evasion

T1562.004 Impair Defenses:
Disable or Modify
System Firewall

Cyclops Blink modifies the Linux
iptables firewall to enable C2

communication via a stored list of port
numbers.

Defence
Evasion

T1036.005 Masquerading:
Match Legitimate
Name or Location

Cyclops Blink renames its running
process to masquerade as a Linux kernel
thread.

Discovery T1082 System Information
Discovery

Cyclops Blink regularly queries device
information.

Command And
Control

T1132.002 Data Encoding: Non-
Standard Encoding

Cyclops Blink command messages use a
custom binary scheme to encode the
specific command to be executed, as well
as any command parameters required.

Command And
Control

T1008 Fallback Channels Cyclops Blink randomly selects a C2
server from contained lists of IPv4
addresses and port numbers.

Command And
Control

T1071.001 Application Layer
Protocol: Web
Protocols

Cyclops Blink can download files via
HTTP or HTTPS.

Command And
Control

T1573.002 Encrypted Channel:
Asymmetric
Cryptography

Cyclops Blink C2 messages are
individually encrypted using AES-256-
CBC and sent underneath TLS.
OpenSSL library functions are used to
encrypt each message using a randomly
generated key and IV, which are then
encrypted using a hard-coded RSA
public key.

Command And
Control

T1571 Non-Standard Port Cyclops Blink contains a list of port
numbers used for C2 communication.
This list includes non-standard ports not
typically associated with HTTP or HTTPS
traffic.

Exfiltration T1041 Exfiltration Over C2
Channel

Cyclops Blink is capable of uploading
files to a C2 server.

https://attack.mitre.org/techniques/T1059/004
https://attack.mitre.org/techniques/T1037/004
https://attack.mitre.org/techniques/T1542/001
https://attack.mitre.org/techniques/T1562/004/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1082
https://attack.mitre.org/techniques/T1132/002
https://attack.mitre.org/techniques/T1008
https://attack.mitre.org/techniques/T1071/001
https://attack.mitre.org/techniques/T1573/002
https://attack.mitre.org/techniques/T1571
https://attack.mitre.org/techniques/T1041

Functionality

Overview

Cyclops Blink is a malicious Linux ELF executable, compiled for the 32-bit PowerPC (big-endian)
architecture. It consists of a core component and additional modules that are executed as child
processes using the Linux API function fork. Linux pipes are used for inter-process communication

between the core component and modules.

Both analysed samples included the same four built-in modules that are executed on startup and
provide basic malware functionality including: file upload/download, system information discovery and
malware version update. Further modules can be added via tasking from a C2 server. The malware
expects these modules to be Linux ELF executables that can be executed using the Linux API
function execlp.

The malware contains a hard-coded RSA public key, which is used for C2 communications, as well as
a hard-coded RSA private key and X.509 certificate. The hard-coded RSA private key and X.509
certificate do not appear to be actively used within the analysed samples, so it is possible that these
are intended to be used by a separate module.

Cyclops Blink also contains an initial list of C2 server IPv4 addresses, and a hard-coded list of port
numbers to use for C2 communications. The content of these lists is different for each of the analysed
samples.

C2 messages include what appears to be a hard-coded ID value, which is set to 0xe2bb2797 and

0x2831bee1 in the analysed samples.

Core component

The core component starts by testing whether it is currently running as a process named
[kworker:0/1]. If this is not the case then Cyclops Blink reloads itself by creating a child process,

running the Linux API function execl(“/proc/self/exe”, [“[kworker:0/1]”], NULL),

and then exiting the parent process.

At this point the malware is running as a process named [kworker:0/1]. This is masquerading as

a kernel thread and has most likely been chosen to blend into the list of running processes.

Note: The Linux kernel creates a number of threads for running various system tasks e.g. scheduling,
disk I/O, etc. When a process listing is viewed, using tools such as ps, these kernel threads are
denoted with square brackets around them.

The core component then modifies the Linux iptables firewall to allow TCP traffic via the hard-

coded list of port numbers used for C2 communications, and starts each of the four built-in modules.

Once the initialisation of the malware is complete the core component enters a main C2 loop where it:

• Receives messages containing data from running modules and queues them up ready to be
sent to a C2 server.

• Beacons, consisting of queued messages, are sent to a C2 server at regular intervals. The
intervals are specified by what appears to be a timeout variable, initially configured as 3600
seconds.

• Decrypts and parses tasking received in response to beacons, either handling them directly
or passing to the appropriate module.

Modules

Module ID 0x8 (system reconnaissance)
The purpose of this module is the discovery of system information from the WatchGuard device. The
module gathers a wide variety of system information, at regular intervals, by running Linux commands
and reading system files. The intervals are specified by what appears to be a module-specific timeout
variable, initially configured as 600 seconds.

The gathered system information, as well as information about Cyclops Blink, is sent to the core
component (where it is queued to be sent to a C2 server).

The gathered system information includes the output of the following Linux API functions:

• uname - gathers name and information about the Linux kernel.

• sysinfo - gathers memory statistics and swap space usage.

• statvfs - gathers statistics for the filesystem containing the current working directory.

• if_nameindex - gathers network interface names.

The gathered system information also includes network configuration information for the identified
network interfaces, as well as the content of the following Linux system files: /etc/issue,

/etc/passwd, /etc/group, /proc/mounts, /proc/partitions, /proc/net/arp.

The Cyclops Blink information includes:

• A value that appears to refer to the current version (set to 0x8036994d and 0x4ba9dc2c in

the analysed samples).

• A list of the currently installed module ID values.

Module ID 0xf (file download/upload)
The purpose of this module is to enable the download and upload of files to/from the WatchGuard
device. The module receives commands from the core component, formatted as follows:

Module ID 0xf command format

AA BB CC DD1 DD2 ... DDN EE1 EE2 ... EEN

control
flags

length
(URL string)

length
(path string)

URL string
(ASCII)

path string
(optional, ASCII)

Each received command is handled in a child process, thus enabling the module to handle multiple
commands concurrently. The control flags are used to control the operation of the module and to
indicate status, and are defined as follows:

Control flags value Description

0x80 If this bit is set, then the download has been redirected to an
absolute URL.

0x40 If this bit is set, then the download has been redirected to a
relative URL.

0x20 If this bit is set, then the download has been completed.

0x10 If this bit is set, then this is an upload operation and URL string
specifies a file to be uploaded to a C2 server. Otherwise, if this bit
is not set, then this is a download operation.

0x8 If this bit is set, then the module downloads from the list of C2
server IPv4 addresses. Otherwise, if this bit is not set, then the
module downloads from the remote server specified in URL
string.

0x4 If this bit is set, then data is downloaded directly into memory and
executed as shellcode. Otherwise, if this bit is not set, then data is
downloaded to the file specified by path string.

0x2 If this bit is set, then the downloaded file is added to Cyclops Blink
as a new module.

0x1 If this bit is set, then the downloaded file is executed as a child
process.

If a download operation does not specify the path string, then data is written to the default location
/var/tmp/a.tmp.

An upload operation reads the contents of the file specified by URL string. The file contents are
formatted as follows and sent to the core component (where it is queued to be sent to a C2 server):

Module 0xf upload message format

AA AA AA AA f i l e : BB BB ... BB \n CC CC ... CC

total size of
message (bytes)

hard-coded format
string

full path to
uploaded file

Uploaded file
contents

Module ID 0x39 (store C2 server IPv4 addresses)
The purpose of this module is to maintain the current list of C2 server IPv4 addresses on the device
filesystem. When started, the module reads the current list of C2 server IPv4 addresses from the file
rootfs_cfg and sends the data to the core component (where it is queued to be sent to a C2

server).

The location for the rootfs_cfg file is identified by searching for the first entry in /proc/mounts

with: read/write permissions, either the relatime or noatime mount option set, and the mounted

device contains either of the strings /dev or ubi.

Note: The file /proc/mounts contains a list of filesystems mounted by the WatchGuard device. The
string ubi most likely refers to UBIFS, a flash filesystem for unmanaged flash memory devices.

When an updated list of C2 server IPv4 addresses is received from the core component these are
written to the file rootfs_cfg, which is created if it does not already exist.

Module ID 0x51 (malware update and persistence)
The purpose of this module is to update the Cyclops Blink Linux ELF executable and to maintain
persistence of the malware throughout the legitimate device firmware update process. When started,
the module sends the contents of the files /etc/wg/configd-hash.xml and

/etc/wg/config.xml to the core component (where they are queued to be sent to a C2 server).

Note: The files /etc/wg/configd-hash.xml and /etc/wg/config.xml are legitimate WatchGuard files
relating to the configuration of the WatchGuard device.

The module responds to the following commands from the core component:

Command ID Description

0x0 Remount the root filesystem with read-only permissions.

0x1 Remount the root filesystem with read/write permissions.

0x2 Update the Cyclops Blink Linux ELF executable. The command includes the
new Cyclops Blink version number and the server address from which to
download the updated Linux ELF executable.

0x3 Send the contents of the file /etc/wg/configd-hash.xml to the core

component (where it is queued to be sent to a C2 server).

When the update command (ID 0x2) is received, the module checks whether the new Cyclops Blink

version matches the current Cyclops Blink version. If they match, then the update command is silently
ignored. Otherwise, a command is sent to module ID 0xf to download the update, with command-

specific data as follows:

• The URL string is set to <server address>/<Cyclops Blink version number>,

where <server address> and <Cyclops Blink version number> are the values

specified by the original update command received from the core component.

• The path string is set to /usr/bin/cpd.

The device filesystem is checked for the presence of the file /usr/bin/cpd every second, for 60

seconds. If the update is successfully downloaded during this period then command ID 0x0 is sent to

the core component, causing the Cyclops Blink process to be terminated. The full set of command IDs
supported by the core component are described in the ‘Communications (Command and control)’
section of this report. The new version of Cyclops Blink will then be executed on device startup via the
RC script S51armled (as described in ‘Cyclops Blink persistence’) or must be started manually. If the

download fails then the old version of Cyclops Blink will continue to run.

Cyclops Blink persistence

Cyclops Blink persistence throughout the legitimate device firmware update process is handled by a
child process of module ID 0x51. Figure 1 summarises how this persistence works.

Does the firmware image
/pending/WGUpgrade-dl

exist on the filesystem?

No

Yes

Copy files

/bin/install_upgrade /pending/bin/install_upgraded

/usr/bin/cpd /pending/bin/cpd

/etc/runlevel/4/S51armled /pending/bin/S51armled

Drop embedded
install_upgrade

install_upgrade is

executed as part of legitimate

firmware update process

Unpack the firmware image and

add Cyclops Blink to the filesystem

Recalculate HMAC

value used to verify

firmware image

Repack the firmware image

• The filesystem contains Cyclops Blink

• The HMAC value has been updated

so that the modified firmware image

will pass verification

Execute legitimate
install_upgrade

to complete firmware

update process

Figure 1: Cyclops Blink persistence throughout the legitimate update process

When the file /pending/WGUpgrade-dl is found on the device filesystem the module first copies

the following files:

• The file /bin/install_upgrade is copied to /pending/bin/install_upgraded

• The file /usr/bin/cpd (the Cyclops Blink executable) is copied to /pending/bin/cpd

• The file /etc/runlevel/4/S51armled is copied to /pending/bin/S51armled

Note: The file /pending/WGUpgrade-dl is the legitimate updated firmware image to be applied to a
WatchGuard device. The file /bin/install_upgrade is a legitimate WatchGuard executable that is
responsible for installing an upgraded device firmware image. The file /etc/runlevel/4/S51armled is an
RC script executed during device startup and is most likely used to execute Cyclops Blink.

The module then overwrites the legitimate /bin/install_upgrade executable with a Linux ELF

executable embedded within Cyclops Blink. This modified version of /bin/install_upgrade is

then used to install the upgraded device firmware image.

The modified version of /bin/install_upgrade unpacks the firmware image

/pending/WGUpgrade-dl. The Cyclops Blink executable and the RC script S51armled are added

to the firmware image. The access and modification timestamps for these files are changed, using the
Linux API function utime, to match those of /pending/sysa_code_dir/bin/busybox-rel. The

HMAC value, used to verify the firmware image, is recalculated to take account of the added files.
Finally, the modified firmware image is repacked ready for installation.

Note: It is possible to recalculate the HMAC value for the modified firmware image because the
WatchGuard FireBox devices use a hard-coded key to initialise the hash calculation.

Once the modified firmware image has been repacked, it is installed using the legitimate
/bin/install_upgrade executable (which was copied to /pending/bin/install_upgraded)

and the WatchGuard device is rebooted. The RC script S51armled then ensures that Cyclops Blink

is executed upon device restart.

Communications

Command and control

Cyclops Blink uses OpenSSL (version 1.0.1f) to support C2 communication underneath TLS. Each
time the malware beacons it randomly selects a destination from the current list of C2 server IPv4
addresses and hard-coded list of C2 ports.

Beacons consist of queued messages containing data from running modules. Each message is
individually encrypted using AES-256-CBC. The OpenSSL_EVP_SealInit function is used to

randomly generate the encryption key and IV for each message, and then encrypt them using the
hard-coded RSA public key.

The OpenSSL_RSA_public_decrypt function is used to decrypt tasking, received in response to

beacons, using the hard-coded RSA public key. The decrypted command is expected to be formatted
as follows:

C2 command format

AA AA AA AA BB CC DD1 DD2 ... DDN

total length of
command (bytes)

target module for command
(0x0 = core component)

command ID command-specific
data

The core component responds to the following commands:

Command ID Description

0x0 Terminate the process running Cyclops Blink.

0x1 Force a beacon to be sent to a C2 server on the next iteration of the main C2
loop.

0x2 Update the list of C2 server IPv4 addresses. The command-specific data
contains the number of C2 server IPv4 addresses, followed by the C2 server
IPv4 addresses in binary format.

0x3 Set the time at which the next beacon will be sent. The command-specific data
contains the time (number of seconds since the epoch) as a 4-byte value.

0x4 Set the beaconing interval. The command-specific data contains the beaconing
interval (seconds) as a 4-byte value.

0x5 Add a new module to Cyclops Blink. The command-specific data contains the
path to a Linux ELF executable that will be loaded.

0x6 Restart Cyclops Blink.

0x7 Set an unknown 4-byte value.

0x8 – 0xa Resend the current Cyclops Blink configuration to all running modules.

0xb Send the hard-coded RSA public key to a specified module. The command-
specific data contains the module ID to which the data should be sent.

0xc Send the hard-coded RSA private key to a specified module. The command-
specific data contains the module ID to which the data should be sent.

0xd Send the hard-coded X.509 certificate to a specified module. The command-
specific data contains the module ID to which the data should be sent.

Conclusion

Cyclops Blink appears to have been professionally developed, given its modular design approach. A
comparison of the core component functionality between the analysed samples indicates that they
have most likely been developed from a common code base.

A significant amount of attention has been given to ensuring that the C2 communications are difficult
to detect and track (for example, use of TLS, AES-256-CBC encryption, multiple redundant C2
servers etc.).

The developers have clearly reverse engineered the WatchGuard Firebox firmware update process
and have identified a specific weakness in this process, namely the ability to recalculate the HMAC
value used to verify a firmware update image. They have taken advantage of this weakness to enable
them to maintain the persistence of Cyclops Blink throughout the legitimate firmware update process.

It is of note that Cyclops Blink has read/write access to the device filesystem, enabling legitimate files
to be replaced with modified versions (e.g. install_upgrade). Even if the specific weakness

highlighted above were fixed, it is expected that the developers would be capable of deploying new
capability to maintain the persistence of Cyclops Blink.

These factors, combined with the professional development approach, lead to the NCSC conclusion
that Cyclops Blink is a highly sophisticated piece of malware.

Whilst the samples of Cyclops Blink described in this report have been compiled for the 32-bit
PowerPC (big-endian) architecture, WatchGuard devices cover a wide range of architectures, and it is
highly likely that these are also targeted by the malware. The weakness in the firmware update
process is also highly likely to be present in other WatchGuard devices. It is therefore recommended
that users follow the WatchGuard mitigation advice for all relevant devices.

Detection

Indicators of compromise

Type Description Values

Path Path location of Cyclops Blink
executable

/usr/bin/cpd

Path Path location to backed-up legitimate
install_upgrade executable

/pending/bin/install_upgraded

Path Default path location for downloaded
files

/var/tmp/a.tmp

Filename Name of file used to persist C2 server
IP addresses on the device filesystem

rootfs_cfg

IPv4 address C2 server IP address 100.43.220[.]234

IPv4 address C2 server IP address 96.80.68[.]193

IPv4 address C2 server IP address 188.152.254[.]170

IPv4 address C2 server IP address 208.81.37[.]50

IPv4 address C2 server IP address 70.62.153[.]174

IPv4 address C2 server IP address 2.230.110[.]137

IPv4 address C2 server IP address 90.63.245[.]175

IPv4 address C2 server IP address 212.103.208[.]182

IPv4 address C2 server IP address 50.255.126[.]65

IPv4 address C2 server IP address 78.134.89[.]167

IPv4 address C2 server IP address 81.4.177[.]118

IPv4 address C2 server IP address 24.199.247[.]222

IPv4 address C2 server IP address 37.99.163[.]162

IPv4 address C2 server IP address 37.71.147[.]186

IPv4 address C2 server IP address 105.159.248[.]137

IPv4 address C2 server IP address 80.155.38[.]210

IPv4 address C2 server IP address 217.57.80[.]18

IPv4 address C2 server IP address 151.0.169[.]250

IPv4 address C2 server IP address 212.202.147[.]10

IPv4 address C2 server IP address 212.234.179[.]113

IPv4 address C2 server IP address 185.82.169[.]99

IPv4 address C2 server IP address 93.51.177[.]66

IPv4 address C2 server IP address 80.15.113[.]188

IPv4 address C2 server IP address 80.153.75[.]103

IPv4 address C2 server IP address 109.192.30[.]125

Rules and signatures

Description Detects notable strings identified within the Cyclops Blink executable

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule CyclopsBlink_notable_strings

{

 meta:

 author = "NCSC"

 description = "Detects notable strings identified within the Cyclops

Blink executable"

 hash1 = "3adf9a59743bc5d8399f67cab5eb2daf28b9b863"

 hash2 = "c59bc17659daca1b1ce65b6af077f86a648ad8a8"

 strings:

 // Process names masqueraded by implant

 $proc_name1 = "[kworker/0:1]"

 $proc_name2 = "[kworker/1:1]"

 // DNS query over SSL, used to resolve C2 server address

 $dns_query = "POST /dns-query HTTP/1.1\x0d\x0aHost:

dns.google\x0d\x0a"

 // iptables commands

 $iptables1 = "iptables -I %s -p tcp --dport %d -j ACCEPT &>/dev/null"

 $iptables2 = "iptables -D %s -p tcp --dport %d -j ACCEPT &>/dev/null"

 // Format strings used for system recon

 $sys_recon1 = "{\"ver\":\"%x\",\"mods\";["

 $sys_recon2 = "uptime: %lu mem_size: %lu mem_free: %lu"

 $sys_recon3 = "disk_size: %lu disk_free: %lu"

 $sys_recon4 = "hw: %02x:%02x:%02x:%02x:%02x:%02x"

 // Format string for filepath used to test access to device

filesystem

 $testpath = "%s/214688dsf46"

 // Format string for implant configuration filepath

 $confpath = "%s/rootfs_cfg"

 // Default file download path

 $downpath = "/var/tmp/a.tmp"

 condition:

 (uint32(0) == 0x464c457f) and (8 of them)

}

Description Detects the code bytes used to initialise the modules built into Cyclops Blink

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule CyclopsBlink_module_initialisation

{

 meta:

 author = "NCSC"

 description = "Detects the code bytes used to initialise the modules

built into Cyclops Blink"

 hash1 = "3adf9a59743bc5d8399f67cab5eb2daf28b9b863"

 hash2 = "c59bc17659daca1b1ce65b6af077f86a648ad8a8"

 strings:

 // Module initialisation code bytes, simply returning the module ID

 // to the caller

 $ = {94 21 FF F0 93 E1 00 08 7C 3F 0B 78 38 00 00 ?? 7C 03

 03 78 81 61 00 00 8E EB FF F8 7D 61 5B 78 4E 80 00 20}

 condition:

 (uint32(0) == 0x464c457f) and (any of them)

}

Description
Detects notable strings identified within the modified install_upgrade executable,
embedded within Cyclops Blink

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule CyclopsBlink_modified_install_upgrade

{

 meta:

 author = "NCSC"

 description = "Detects notable strings identified within the modified

install_upgrade executable, embedded within Cyclops Blink"

 hash1 = "3adf9a59743bc5d8399f67cab5eb2daf28b9b863"

 hash2 = "c59bc17659daca1b1ce65b6af077f86a648ad8a8"

 hash3 = "7d61c0dd0cd901221a9dff9df09bb90810754f10"

 hash4 = "438cd40caca70cafe5ca436b36ef7d3a6321e858"

 strings:

 // Format strings used for temporary filenames

 $ = "/pending/%010lu_%06d_%03d_p1"

 $ = "/pending/sysa_code_dir/test_%d_%d_%d_%d_%d_%d"

 // Hard-coded key used to initialise HMAC calculation

 $ = "etaonrishdlcupfm"

 // Filepath used to store the patched firmware image

 $ = "/pending/WGUpgrade-dl.new"

 // Filepath of legitimate install_upgrade executable

 $ = "/pending/bin/install_upgraded"

 // Loop device IOCTL LOOP_SET_FD

 $ = {38 80 4C 00}

 // Loop device IOCTL LOOP_GET_STATUS64

 $ = {38 80 4C 05}

 // Loop device IOCTL LOOP_SET_STATUS64

 $ = {38 80 4C 04}

 // Firmware HMAC record starts with the string "HMAC"

 $ = {3C 00 48 4D 60 00 41 43 90 09 00 00}

 condition:

 (uint32(0) == 0x464c457f) and (6 of them)

}

Description
Detects the code bytes used to test the command ID being sent to the core
component of Cyclops Blink

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule CyclopsBlink_core_command_check

{

 meta:

 author = "NCSC"

 description = "Detects the code bytes used to test the command ID

being sent to the core component of Cyclops Blink"

 hash1 = "3adf9a59743bc5d8399f67cab5eb2daf28b9b863"

 hash2 = "c59bc17659daca1b1ce65b6af077f86a648ad8a8"

 strings:

 // Check for command ID equals 0x7, 0xa, 0xb, 0xc or 0xd

 $cmd_check = {81 3F 00 18 88 09 00 05 54 00 06 3E 2F 80 00

 (07|0A|0B|0C|0D)}

 condition:

 (uint32(0) == 0x464c457f) and (#cmd_check == 5)

}

Description Detects the initial characters used to identify Cyclops Blink configuration data

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule CyclopsBlink_config_identifiers

{

 meta:

 author = "NCSC"

 description = "Detects the initial characters used to identify

Cyclops Blink configuration data"

 hash1 = "3adf9a59743bc5d8399f67cab5eb2daf28b9b863"

 hash2 = "c59bc17659daca1b1ce65b6af077f86a648ad8a8"

 strings:

 // Main config parameter data starts with the string "<p: "

 $ = "<p: " fullword

 // RSA public key data starts with the string "<k: "

 $ = {3C 00 3C 6B 60 00 3A 20 90 09 00 00}

 // X.509 certificate data starts with the string "<c: "

 $ = {3C 00 3C 63 60 00 3A 20 90 09 00 00}

 // RSA private key data starts with the string "<s: "

 $ = {3C 00 3C 73 60 00 3A 20 90 09 00 00}

 condition:

 (uint32(0) == 0x464c457f) and (all of them)

}

Description
Detects the code bytes used to check module ID 0xf control flags and a format
string used for file content upload

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule CyclopsBlink_handle_mod_0xf_command

{

 meta:

 author = "NCSC"

 description = "Detects the code bytes used to check module ID 0xf

control flags and a format string used for file content upload"

 hash1 = "3adf9a59743bc5d8399f67cab5eb2daf28b9b863"

 hash2 = "c59bc17659daca1b1ce65b6af077f86a648ad8a8"

 strings:

 // Tests execute flag (bit 0)

 $ = {54 00 06 3E 54 00 07 FE 54 00 06 3E 2F 80 00 00}

 // Tests add module flag (bit 1)

 $ = {54 00 06 3E 54 00 07 BC 2F 80 00 00}

 // Tests run as shellcode flag (bit 2)

 $ = {54 00 06 3E 54 00 07 7A 2F 80 00 00}

 // Tests upload flag (bit 4)

 $ = {54 00 06 3E 54 00 06 F6 2F 80 00 00}

 // Upload format string

 $ = "file:%s\n" fullword

 condition:

 (uint32(0) == 0x464c457f) and (all of them)

}

Description Detects the code bytes used to set default Cyclops Blink configuration values

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule CyclopsBlink_default_config_values

{

 meta:

 author = "NCSC"

 description = "Detects the code bytes used to set default Cyclops

Blink configuration values"

 hash1 = "3adf9a59743bc5d8399f67cab5eb2daf28b9b863"

 hash2 = "c59bc17659daca1b1ce65b6af077f86a648ad8a8"

 strings:

 // Unknown config value set to 0x19

 $ = {38 00 00 19 90 09 01 A4}

 // Unknown config value set to 0x18000

 $ = {3C 00 00 01 60 00 80 00 90 09 01 A8}

 // Unknown config value set to 0x4000

 $ = {38 00 40 00 90 09 01 AC}

 // Unknown config value set to 0x10b

 $ = {38 00 01 0B 90 09 01 B0}

 // Unknown config value set to 0x2711

 $ = {38 00 27 11 90 09 01 C0}

 condition:

 (uint32(0) == 0x464c457f) and (3 of them)

}

Description
Detects the code bytes used to check commands sent to module ID 0x51 and
notable strings relating to the Cyclops Blink update process

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule CyclopsBlink_handle_mod_0x51_command

{

 meta:

 author = "NCSC"

 description = "Detects the code bytes used to check commands sent to

module ID 0x51 and notable strings relating to the Cyclops Blink update

process"

 hash1 = "3adf9a59743bc5d8399f67cab5eb2daf28b9b863"

 hash2 = "c59bc17659daca1b1ce65b6af077f86a648ad8a8"

 strings:

 // Check for module command ID equals 0x1, 0x2 or 0x3

 $cmd_check = {88 1F [2] 54 00 06 3E 2F 80 00 (01|02|03)}

 // Legitimate WatchGuard filepaths relating to device configuration

 $path1 = "/etc/wg/configd-hash.xml"

 $path2 = "/etc/wg/config.xml"

 // Mount arguments used to remount root filesystem as RW or RO

 $mnt_arg1 = "ext2"

 $mnt_arg2 = "errors=continue"

 $mnt_arg3 = {38 C0 0C 20}

 $mnt_arg4 = {38 C0 0C 21}

 condition:

 (uint32(0) == 0x464c457f) and (#cmd_check == 3) and

 ((@cmd_check[3] - @cmd_check[1]) < 0x200) and

 (all of ($path*)) and (all of ($mnt_arg*))

}

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings
and recommendations made have not been provided with the intention of avoiding all risks and
following the recommendations will not remove all such risk. Ownership of information risks
remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

